

Cálculo de la huella de carbono de la movilidad por barrios de la ciudad de Valencia.

Carlos Jiménez García

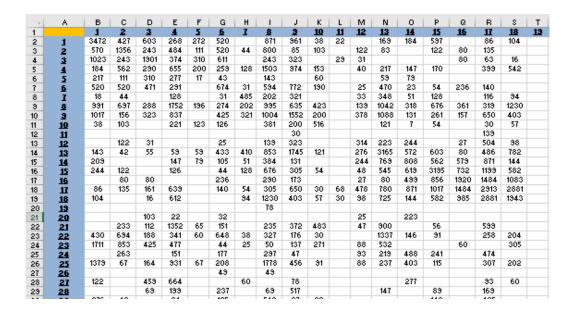
Tutor: Eloína Coll

Cotutora: Mª Joaquina Porres

Director experimental: Edgar Lorenzo

8 Noviembre 2023

Objetivo General


Calcular la huella de carbono de la movilidad dentro de los barrios de la ciudad de Valencia.

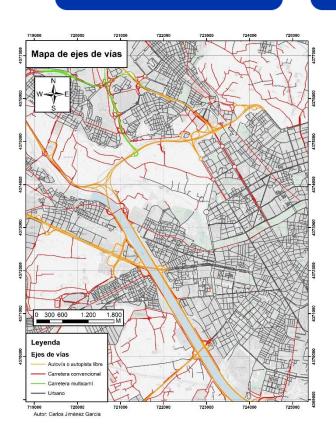
Objetivos Específicos

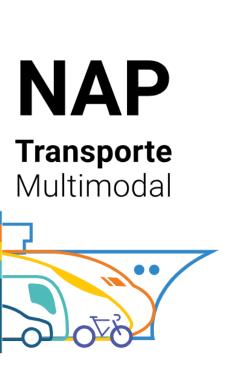
- **1. Analizar** el **plan de movilidad** metropolitana de la Comunidad Valenciana.
- 2. Asociar las zonas del plan de movilidad a los barrios de la ciudad.
- **3. Seleccionar y calcular** los factores de emisión de cada medio de desplazamiento.
- **4. Calcular** las **distancias** recorridas en los **desplazamientos** por tipo de transporte.
- 5. Calcular las distancias recorridas en cada barrio de Valencia.
- **6. Calcular** las **emisiones** de los desplazamientos en los barrios de la ciudad de Valencia.

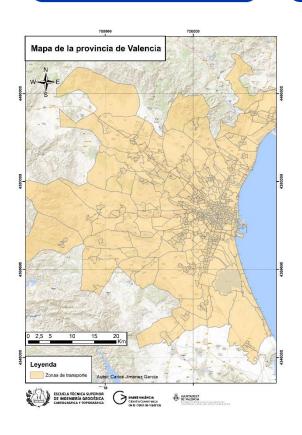
Datos

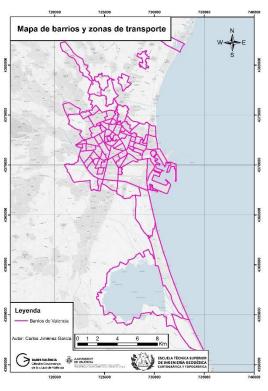
Matriz OD

Factores de emisión


Datos geoespaciales


Ejes de vías


Transporte Público


Zonas PMoMe

Barrios de Valencia

Línea de tiempo

A partir de la base de datos, sacar los estadísticos que aplicaremos posteriormente a los desplazamientos.

2 ---- Barrios de Valencia

Asociar los barrios de la ciudad de Valencia a las zonas de transporte

Split

Es momento de asociar a cada barrio la parte de los desplazamientos que ocurre dentro de cada uno.

---- Diseñar las redes

Diseñar las redes de transporte para su análisis.

Desplazamientos

Ejecutar el análisis de los desplazamientos para obtenerlos en formato vectorial

Estadísticos

Recuperar los estadísticos del primer punto , asociarlos a los resultados y calcular el número de desplazamientos final

---- Emisiones

Asociar las emisiones al total de desplazamientos

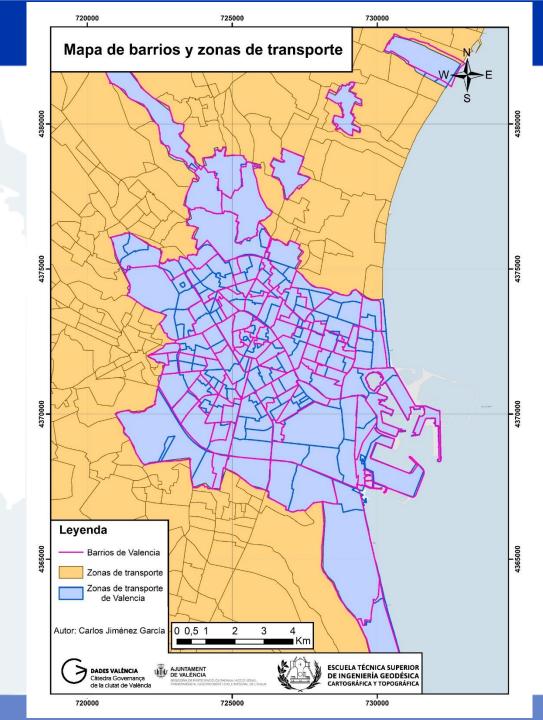
Factores de emisión

Calcular los factores de emisión estudiados para cada vehículo

Matriz origen-destino de movilidad

	Α	В	С	D	Е	F	G	н	1	J	K	L	M	N	0	Р	Q	R	S	Т
1		1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	11	18	19
2	1	3472	427	603	268	272	520		871	961	38	22		169	184	597		86	104	
3	2	570	1356	243	484	111	520	44	800	85	103		122	83		122	80	135		
4	3	1023	243	1901	374	310	611		243	323		29	31				80	63	16	
5	4	184	562	290	655	200	259	128	1503	974	153		40	217	147	170		399	542	
6	5	217	111	310	277	17	43		143		60			59	79					
7	6	520	520	471	291		674	31	594	772	190		25	470	23	54	236	140		
8	1	18	44		128		31	485	202	321			33	348	51	128		116	94	
9	8	991	697	288	1752	196	274	202	995	635	423		139	1042	318	676	361	319	1230	
10	9	1017	156	323	837		425	321	1004	1552	200		378	1088	131	261	157	650	403	
11	10	38	103		221	123	126		381	200	516			121	7	54		30	57	
12	11									30								139		
13	12		122	31			25		139	323			314	223	244		27	504	98	
14	13	143	42	55	59	59	433	410	853	1745	121		276	3165	572	603	80	486	782	
15	14	209			147	79	105	51	384	131			244	769	808	562	579	871	144	
16	15	244	122		126		44	128	676	305	54		48	545	619	3195	732	1199	582	
17	16		80	80			236		290	173			27	80	499	856	1920	1484	1083	
18	17	86	135	161	639		140	54	305	650	30	68	478	780	871	1017	1484	2913	2881	
19	18	104		16	612			94	1230	403	57	30	98	725	144	582	985	2881	1943	
20	19								78											
21	20			103	22		32						25		223					
22	21		233	112	1352	65	151		235	372	483		47	900		56		599		
23	22	430	694	188	341	60	648	38	327	176	30			1337	146	91		258	204	
24	23	1711	853	425	477		44	25	50	137	271		88	532			60		305	
25	24		263		151		177		297	47			93	219	488	241		474		
26	25	1379	67	164	931	67	208		1778	456	91		88	237	403	115		307	202	
27	26						49		49											
28	27	122		459	664			60		78					277			93	60	
29	28			69	199		237		69	517				147		89		169		
		070	40		~4		405		540	^7	-00					440		405		

MUN_O (LETRAS) -	ZONA_O ▼	MUN_D (LETRAS) -	ZONA_D 🔻	Distancia 🕶	Nivel estad ▼	MEDI12 ▼	MEDI1LETRA ▼ N
Xirivella	187	Valencia	66	8.357,5	10 km	Pie	A pie
Valencia	66	Xirivella	187	9.542,3	10 km	Pie	A pie
Xirivella	187	Foios	300	13.503,5	20 km	Coche	Coche como conductor
Foios	300	Xirivella	187	14.908,0	20 km	Coche	Coche como conductor
Xirivella	187	Picassent	258	19.793,9	20 km	Coche	Coche como conductor
Picassent	258	Xirivella	187	19.866,4	20 km	Coche	Coche como conductor
Xirivella	187	Xirivella	193	1.268,3	3 km	Coche	Coche como conductor


Planteamiento del análisis

Análisis teórico.

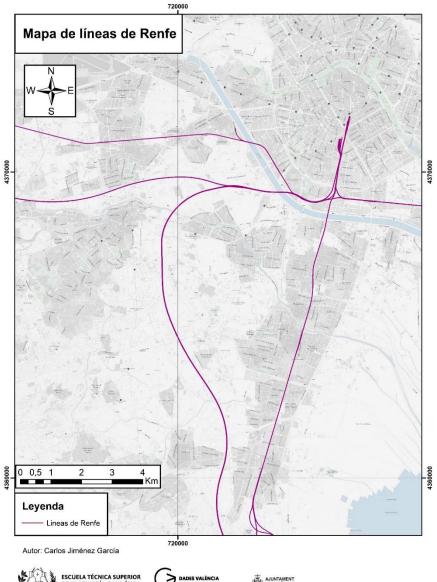
560 zonas de transporte (184 dentro de Valencia).

88 barrios de Valencia.

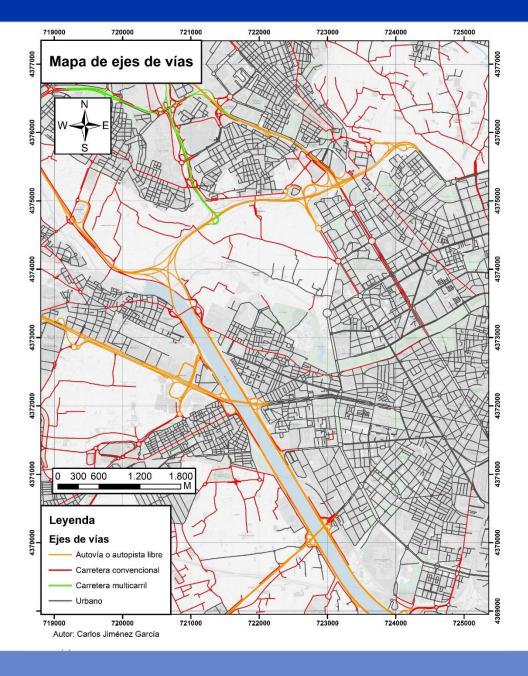
313600 combinaciones - 6 vehículos diferentes

Factores de emisión y medios de transporte estudiados

CO₂ como GEI


NO_x como calidad del aire

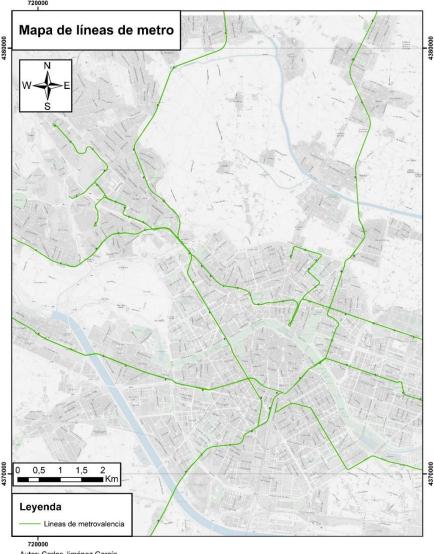
PM como calidad del aire

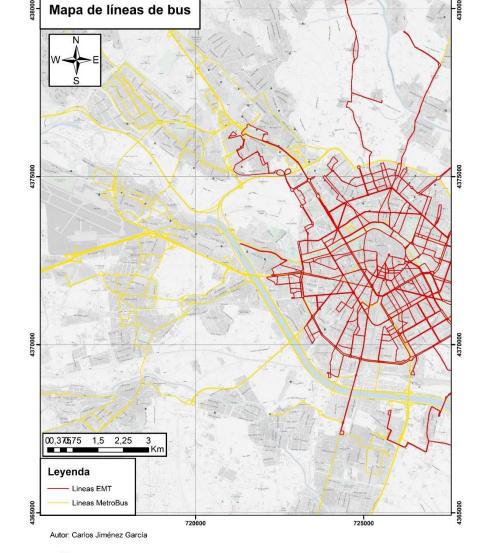

g/km	Coche	Autobuses	Metro
CO2	170,616652	728,096149	25,95
NOX	0,40031634	4,98476338	0,028
PM	0,01356207	0,10191219	0,019

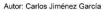
g/km	Renfe	Motocicleta	Camión
CO2	31,68717475	110,428004	283,538401
NOX	0,005510305	0,18468669	0,9554446
PM	0,000161576	0,05590923	0,04252239

JIIDE23 ÉVORA

Redes de análisis I

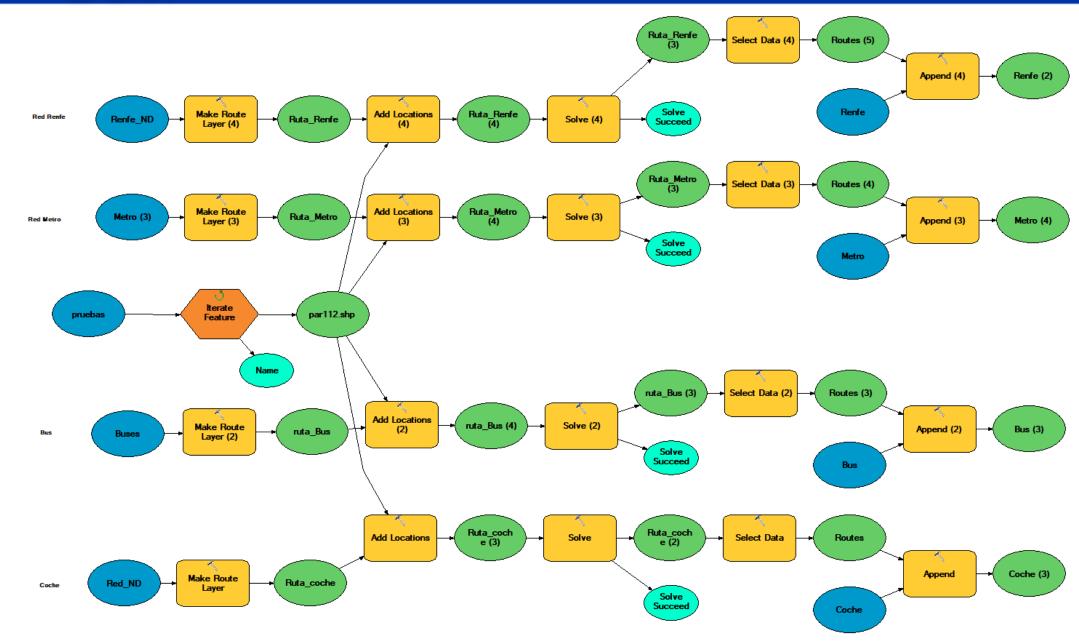






JIIDE23 ÉVORA

Redes de análisis II



Model builder

Calcular distancias recorridas por tipo de transporte.

- Script 1: Model builder.
- Script 2: Crear un shape con cada combinación de puntos para ejecutar model builder.
- Script 3: Fusión de los dos anteriores.

1 Día = 5 Origenes

 Script 4: Reducir las combinaciones, pues no tenemos información de todas.

1 DÍA ≈ 3000 COMBINACIONES

Estadísticos

- 1. Asociar la distancia de cada ruta en la BBDD
- 2. Estudiar la relación método/distancia
- 3. Encontrar puntos críticos
- 4. Sacar estadísticos (tanto por 1)

Intervalo	Código	Coche	Autobús	Metro	Renfe	Motocicleta	Camión
<3 km	1	0,22986703	0,06348449	0,01125128	0,00061371	0,01063757	0,00184112
3-5 km	2	0,41774631	0,19644471	0,05257608	0,00060259	0,0236517	0,00331425
5-10 km	3	0,56929115	0,15513858	0,11147903	0,00416973	0,02538631	0,00453765
10-20 km	4	0,75640535	0,05525813	0,10439771	0,01108987	0,01739962	0,0042065
>20 km	5	0,83858716	0,06076719	0,03797949	0,01898975	0,00987467	0,00455754

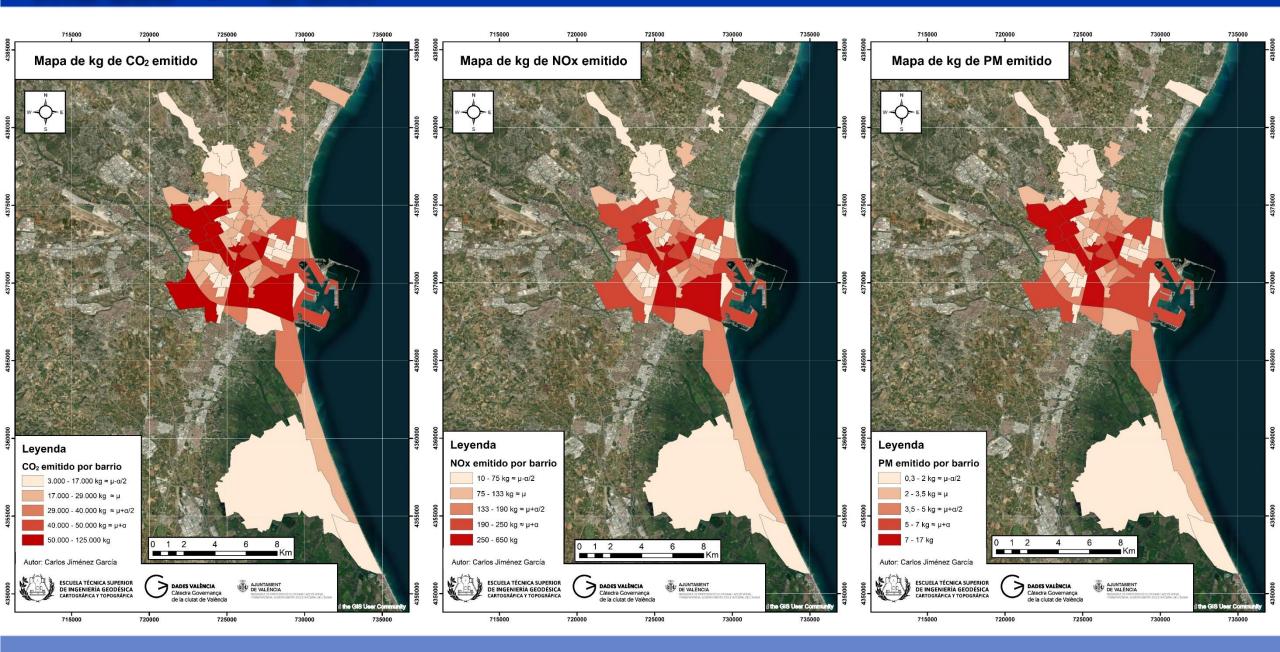
Calcular distancias recorridas en cada barrio de Valencia.

- Preparar información alfanumérica para agregarla a la información vectorial
- Cálculo de los tramos que recorren los desplazamientos en cada barrio
 - Diseño de un código que:
 - Analice cada desplazamiento en cada barrio
 - Una toda la información de un barrio en una capa (una capa por barrio)

Calcular distancias recorridas en cada barrio de Valencia.

- Para cada par y tipo de vehículo:
- ¿Hay ruta?
 - Si -> Aplicar el estadístico correspondiente.
 - No -> dividir entre el número de vehículos que si tienen ruta en ese par y repartir el estadístico correspondiente a los que sí tienen ruta.

İS								
Par	→ Desplazar →	Intervalc ▼	Coche	Bus	Metro	Renfe	Moto	Furgoneta/Camión
1 - 10	38,0402368	1	8,74886537	2,41963402	0,43267041	0	0,40932488	0,07470568
1 - 102	133,923659	3	76,3532384	20,8884118	15,0413646	0	3,51151316	0,71938389
1 - 103	258,580026	3	154,683434	47,5918536	0	0	14,0405085	8,64946065
1 - 104	147,879369	2	63,7420675	31,016127	0	0	5,46360579	2,45611636
1 - 108	267,494263	2	111,776979	52,5800715	14,096037	0	6,35893262	0,91878113
1 - 11	21,5710785	1	4,96112742	1,37207651	0,24534987	0	0,23211157	0,04236256
1 - 115	157,67865	2	73,6372121	0	16,057663	0	11,4969067	8,29012484
1 - 117	123,332223	3	70,314795	19,2364387	13,8518089	0	3,23380295	0,662490969
1 - 118	728,711416	3	415,456663	113,658962	81,8437473	0	19,1070028	3,91434388
1 - 120	161,357488	3	91,9939526	25,1673354	18,1225395	0	4,23083528	0,866747359
1 - 124	152,057773	3	100,290251	0	0	0	17,5852932	14,41509184
1 - 129	33,6221506	3	19,1688317	5,24413186	3,77620377	0	0,88158153	0,180604636
1 - 13	169,159122	1	38,9048679	10,7597429	1,9240192	0	1,82020521	0,332204754
1 - 139	93,2773616	3	55,7988289	17,1677705	0	0	5,06482118	3,120112870
1 - 14	183,529512	2	79,1087398	38,4933658	0	0	6,78074913	3,048226672
1 - 142	58,7483134	3	38,7476612	0	0	0	6,79416967	5,56934587
1 - 146	184,153762	2	79,3778172	38,6242957	0	0	6,8038129	3,0585947
1 - 149	532,643464	2	222,574034	104,699185	28,0684971	0	12,6621179	1,829507528
1 - 15	596,970667	1	138,994636	39,6691384	0	0	8,12108068	2,869855578
1 - 159	139,060449	3	79,281851	21,6896098	15,6182927	0	3,64620112	0,746976655
1 - 17	85,6524288	2	36,9197065	17,9646872	0	0	3,16454627	1,42259419
1 - 172	179,577011	2	75,0392759	35,2985966	9,46309709	0	4,26894431	0,616805642
1 - 178	88,8627225	3	54,1279037	0	13,4454726	0	5,79503957	3,942370599
1 - 18	103,571507	1	24,1148933	6,88240255	0	0	1,40896799	0,49790598
1 - 187	63,9781495	3	36,422194	9,92547941	7,13222197	0,26677178	1,62416936	0,29031046
1 - 189	113,368201	3	64,539513	17,587782	12,6381769	0,47271509	2,87800069	0,51442524
1-2	426,780831	1	98,1552257	27,1463456	4,85421361	0	4,59229561	0,83813760
1 - 205	100,021881	4	75,6570865	5,52702174	10,4420549	1,10922928	1,74034249	0,42074213
1 - 208	130,99457	4	99,0849944	7,23851451	13,6755326	1,45271225	2,27925543	0,55102878
1 - 219	314,336065	3	178,948738	48,7656514	35,0418792	1,31069735		
1 - 22	868,330062	1	199,707033	55,2320683	9,8764033	0	9,34350384	1,70527826



Resultados

Datos desagregados completamente

			CO2								
	Código			Factores d	le emisión						
Nombre barrio		170,616652	728,096149	25,950000	31,687175	110,428004	283,538401	Total g			
	barrio	Coche	Bus	Metro	Renfe	Moto (Camion				
LA SEU	011	2839788,9	6417236,8	0,0	0,0	98373,8	94857,7	9450257,1			
LA XEREA	012	10710107,5	20515725,8	71914,7	0,0	417119,7	485598,4	32200466,1			
EL CARME	013	7196640,3	11300629,9	0,0	0,0	281410,9	321449,9	19100131,0			
EL PILAR	014	8464863,0	8340488,0	0,0	0,0	288479,5	299251,3	17393081,8			
EL MERCAT	015	11950268,6	4536526,8	0,0	0,0	418209,7	431927,0	17336932,0			
SANT FRANCESC	016	23932618,6	67671074,1	700542,2	0,0	968837,6	1208903,3	94481975,9			
RUSSAFA	021	31980351,4	40138439,7	171695,7	45611,4	1485796,6	2184615,3	76006510,1			

JIIDE23 ÉVORA

Conclusiones

Los menos contaminantes:

Borbotó Favara Benifaraig

Sin líneas ferroviarias
Poca combinación de autobuses
Carreteras poco transitadas

• Los más contaminantes:

Arrancapins
Sant Francesc
Nou Moles

Estación del norte
Alta combinación de buses
Paradas de metro más transitadas

Conclusiones

Comparativa con el PACES en la ciudad de Valencia.

- Transporte privado y comercial 2019: 1.121.450 Toneladas/año.
- Resultado anual del proyecto: 910.803 Toneladas/año.

Mejora de la precisión temporal y espacial.

Anual → Diaria

Ciudad → Barrios

Líneas futuras

- Metodología nueva para aplicar
 - Datos de movilidad
 - Factores de emisión
 - Redes
 - Zonas de estudio

Gracias por su atención.

