

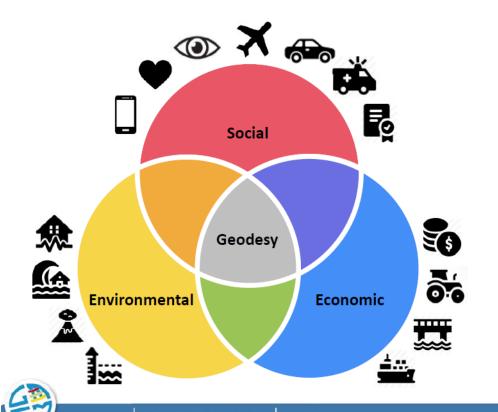
Direção-Geral do Território

Rede Nacional de Estações Permanentes GNSS - ReNEP

Webinar – 29 de outubro de 2025

Sumário

- 1. Breves conceitos de Geodesia
- 2. A ReNEP, breve história
- 3. Configuração e gestão da rede
- 4. Os produtos disponibilizados pela ReNEP
- 5. Projetos em curso
- 6. Gestão da ReNEP


Geodesia, o que é?

Ciência que estuda a forma e dimensões da Terra, incluindo o seu campo gravítico e as variações ao longo do tempo

A Geodesia utiliza técnicas de medição terrestres e espaciais para determinar os referenciais geodésicos nos quais assentam todas as medidas e representações do nosso planeta

UN-GGIM - Subcommittee on Geodesy

United Nations Global Geodetic Centre of Excellence (GGCE)

Geodesy

"Science of measuring the shape, orientation and gravity field of the Earth and how it changes over time."

A Geodesia tem como objetivo:

- Determinar o campo gravítico da Terra
- Definir os Sistemas de Referência
- Apoiar estudos de geodinâmica
- Apoiar a navegação e posicionamento
- Apoiar a Cartografia e Cadastro
- Apoiar o Ordenamento do Território
- Apoiar a construção (edifícios, vias de comunicação, etc)
- Apoiar a construção e monitorização de obras de arte
- Monitorizar fenómenos naturais

https://igs.org/wg/tiga/

Infraestrutura Geodésica

Objetivo

- ➤ Materialização do Referencial Geodésico Nacional
- ➤ Posicionamento Geodésico de precisão
 - Rede Nacional de Estações Permanentes GNSS
 - > Rede Geodésica Nacional

NAVSTAR/GPS

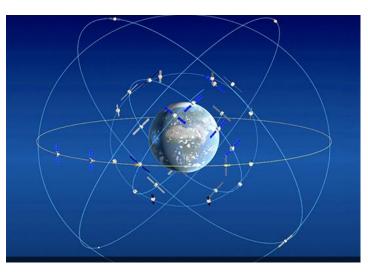
NAVigation System using Timing and Ranging/Global Positioning System

- Criado e desenvolvido em 1973 pelo Department of Defense (DoD) dos EUA com o objetivo de garantir navegação de precisão, continua e globalmente, em tempo real e sob quaisquer condições atmosféricas
- Totalmente operacional em 17/07/1995
- Inicialmente: 24 satélites em 6 órbitas
- Atualmente: 31 satélites operacionais

GLONASS

- Sistema Russo análogo ao GPS
- Primeiro lançamento em 1982
- 24 satélites em 3 órbitas circulares
- Atualmente: 24 satélites operacionais

https://spacenews.com/space-force-taps-four-companies-to-design-resilient-gps-satellites/



GALILEO

- Sistema Europeu
- Primeiros lançamentos: Dez2005, Abr2008
- Previsto: 30 satélites em 3 planos orbitais a 30000km
- Atualmente: 24 satélites em órbita

BEIDOU

- Sistema Chinês
- Concluído em 2020
- Atualmente: 35 satélites operacionais

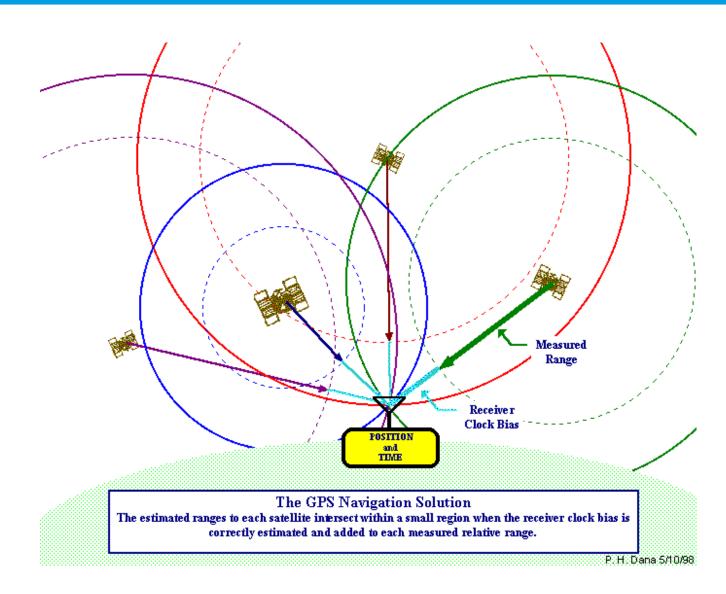
https://insidegnss.com/

https://www.esa.int

Quadro comparativo

Sistema	Satélites operacionais (≈, 2025)	Cobertura	Nº satélites previsto / nominal	Satélite mais recente / lançamento mais recente	Data do lançamento
GPS (EUA)	31–32	Global	24 (mínimo), até 32 em operação	GPS III SV-08 ("USA-545")	30 de Maio de 2025 (launchcalendar.org)
GLONASS (Rússia)	24	Global	74 (3 hianns x x sints)	Glonass-K 18L (com satélite adicional "Mozhaets-6")	13 de Setembro de 2025 (russianforces.org)
GALILEO (UE)	27	Global	•	Par de satélites Galileo L13 (FOC) — satélites 31 & 32	18 de Setembro de 2024 (Defence Industry and Space)
BEIDOU (China)	≈30–46 (dependendo do critério de operação)	Global	3()	Dois satélites de BeiDou-3 (nº 59 e 60) / novos MEO upgrading	19 de Setembro de 2024 (plenglish.com)
NavIC / IRNSS (Índia)	8 (nominal 7; substituições em curso)	Regional (Índia + 1.500 km em torno)	/	NVS-02 (um novo satélite de navegação para NavIC)	29 de Janeiro de 2025 (reuters.com)

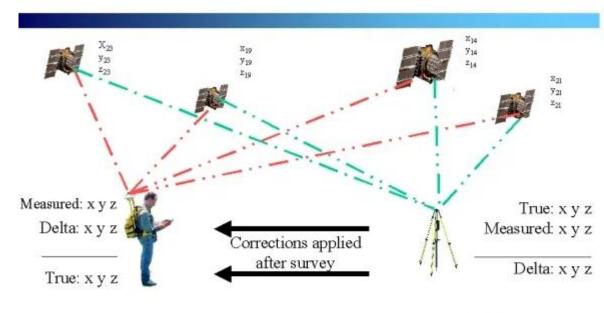
Frequências GNSS


Os sistemas GPS, GLONASS, GALILEO e BEIDOU operam em bandas próximas da gama L (1–2 GHz), garantindo interoperabilidade e elevada precisão nas aplicações de posicionamento global.

Sistema	Frequências Principais			Outras	Notas
GPS	L1 (1575,42)	L2 (1227,60)	L5 (1176,45)	_	L1C e L2C melhoram a interoperabilidade com outros sistemas GNSS.
GLONASS	L1 (1602 + k×0,5625)	L2 (1246 + k×0,4375)	L3 (1202,025)	_	GLONASS-K: incluem a banda L3 (1202,025 MHz) e adoptam tecnologia CDMA, aumentando a compatibilidade com GPS e GALILEO
GALILEO	E1 (1575,42)	E5b (1207,14)	E5a (1176,45)	E6 (1278,75)	E5a + E5b formam a banda E5 wideband, proporcionando maior exactidão
BEIDOU	B1I/B1C (1561– 1575)	B2b (1207,14)	B2a (1176,45)	B3I (1268,52)	B2a: 1176,45 MHz – Interoperável com GPS L5 e Galileo E5a. B2b: 1207,14 MHz – Semelhante a Galileo E5b. B3I: 1268,52 MHz – Suporte adicional regional e militar.

Modo de funcionamento - GNSS

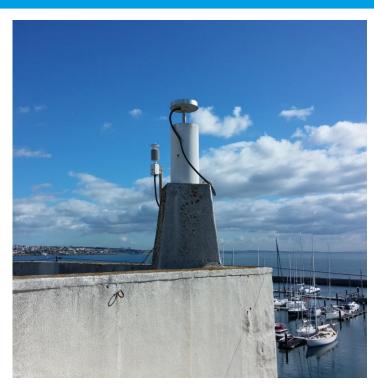
Os recetores GNSS ao captar os sinais dos satélites calculam a distância aos satélites medindo o tempo que o sinal levou desde a sua emissão até à receção. Com a informação de, pelo menos, quatro satélites, é possível o equipamento determinar a sua posição tridimensional (X, Y, Z) recorrendo à trilateração.



Modo de funcionamento diferencial - GNSS

A precisão das coordenadas adquiridas por RTK é melhorada significativamente recorrendo à técnica de posicionamento diferencial, ou GPS diferencial (DGPS).

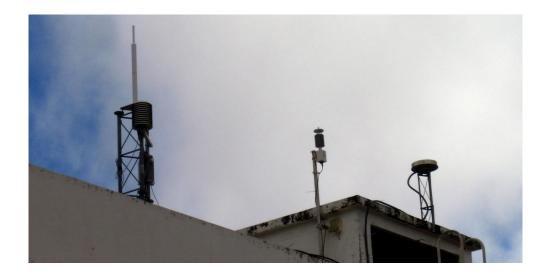
As <u>estações de referência</u> são pontos equipados com equipamento GNSS cuja posição é conhecida com alta precisão. Estas estações, a operar continuamente, determinam a sua posição instantânea a partir dos sinais dos satélites, esta posição é comparada com as coordenadas absolutas. Daqui resultam os diferenciais de cada componente — Delta X Y Z - a que chamamos <u>correções</u> <u>diferenciais</u>. Estas correções são então enviadas ao recetor do utilizador, que as aplica às coordenadas instantâneas da sua posição, corrigindo erros de relógios, influência da atmosfera, ionosfera e etc.



1997

Cascais – 1ª estação GPS

- Localização adequada a ligação com outras técnicas geodésicas
- Localização que permita a ligação a projetos internacionais
- Estabilidade do local e envolvente
- Linha telefónica dedicada, transmissão de dados
- Colaboração com o IH para escolha do melhor local



1999 - 2000

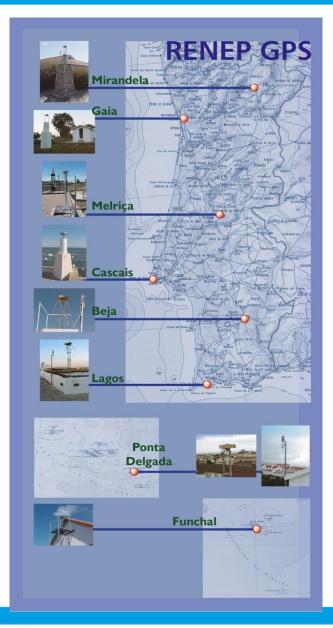
GAIA

LAGO

PDEL

Até 2005

Funcionamento:


- Pós-processamento
- Ficheiros diários a 30 s
- Recolha "manual" dos ficheiros

Objetivos:

- Manter o Referencial Geodésico
- Apoiar trabalhos de posicionamento
- Contribuir para os Sistemas de Referência Globais e Regionais (EPN e IGS)

2006 – Expansão da ReNEP

Objetivos:

- Configurar a rede de forma a ter uma cobertura eficaz de todo o território nacional
- Manutenção do Referencial Nacional
- Posicionamento em Tempo Real

2007 a 2009:

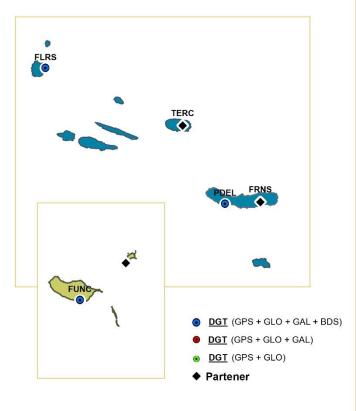
- 28 EP Instaladas
- 4 EP Parceiros
- Abr 2007: Ficheiros horários a 5s
- Mar 2009: Novos Produtos para RTK

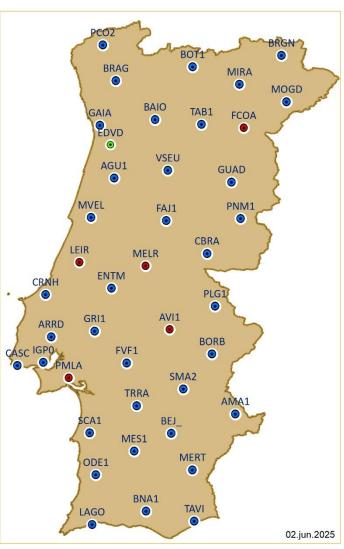
2015: Conclusão da Rede

Rede Nacional de Estações Permanentes GNSS - ReNEP

47 Estações Permanentes:

- > 42 no Continente
- > 4 na RA dos Açores (2 de parceiro)
- > 1 na RA da Madeira


ReNEP


- > 39 EP com GPS, GLONASS, GALILEO e BEIDOU
- **→** 6 EP com GPS, GLONASS e GALILEO
- > 2 EP com GPS e GLONASS

ReNEP

ReNEP - Produtos

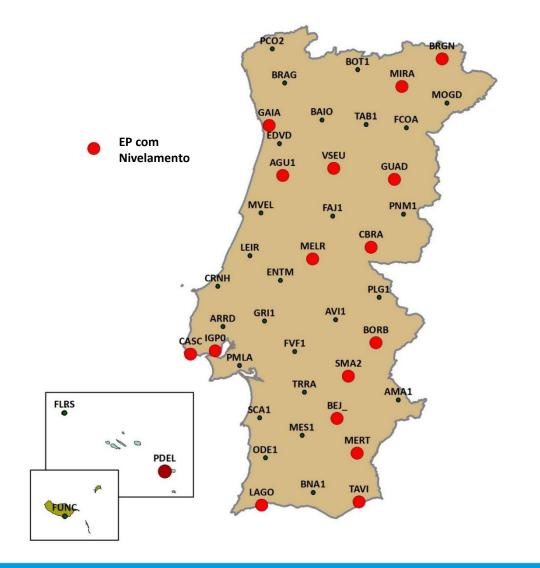
<u>Pós-processamento (ficheiros RINEX)</u>:

- Ficheiros horários a 5s
- Ficheiros diários a 30s
- Outras taxas de recolha a pedido

RTK (MSM5):

Produtos para GPS, GLONASS, GALILEO e BEIDOU

- Base única (porta 2102)
- Estação mais próxima (porta 2106 NSR5)
- Rede (porta 2108 ACR5)


RTK:

Produtos para GPS e GLONASS

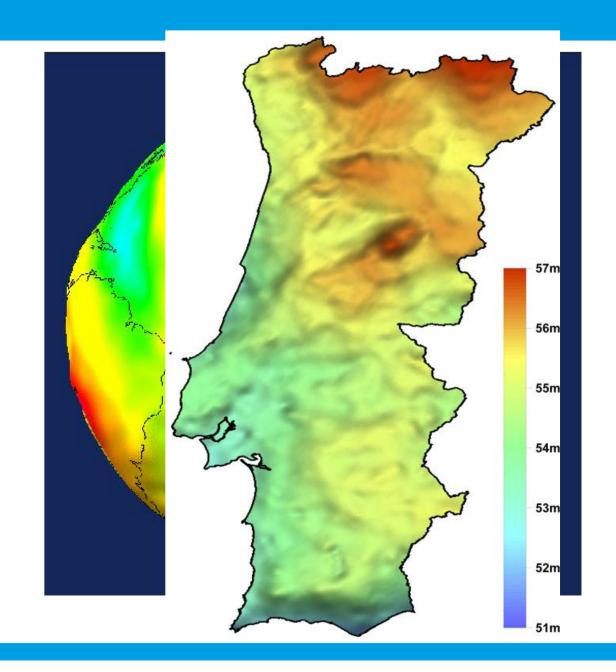
- Base única (porta 2101)
- Estação mais próxima (porta 2106 -NSRT23/NSRT)
- Rede (porta 2108 ACRT)

Nivelamento Geométrico de Alta Precisão - ReNEP

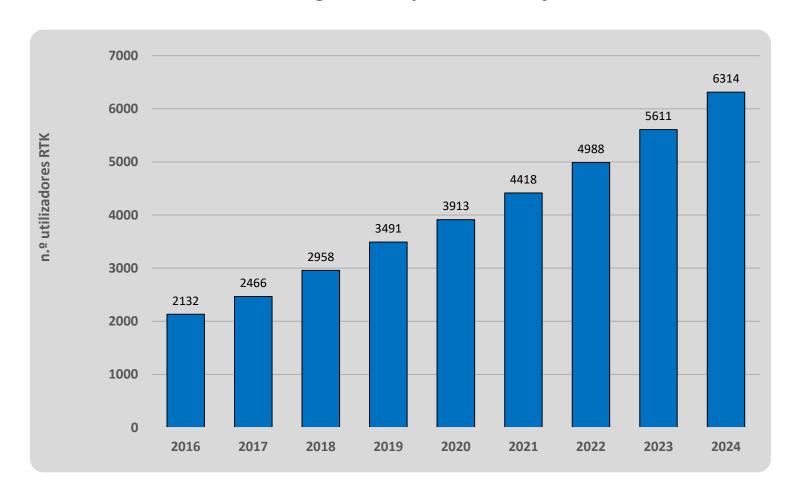
17 EP com Nivelamento : determinação rigorosa da altitude ortométrica e da ondulação do Geoide

Modelo de Geoide

Altitudes Elipsoidais (h)


Modelo de Geoide (ondulação do Geoide -N)

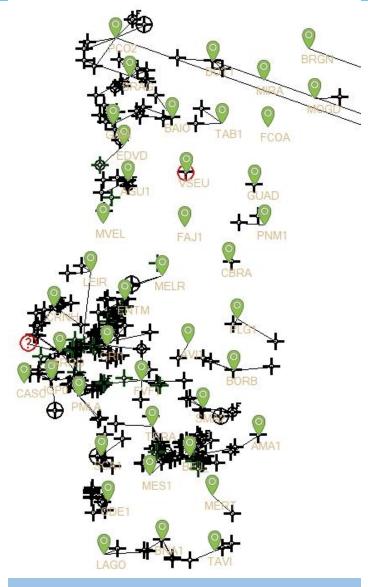
Altitudes Ortométricas (H)


$$H = h - N$$

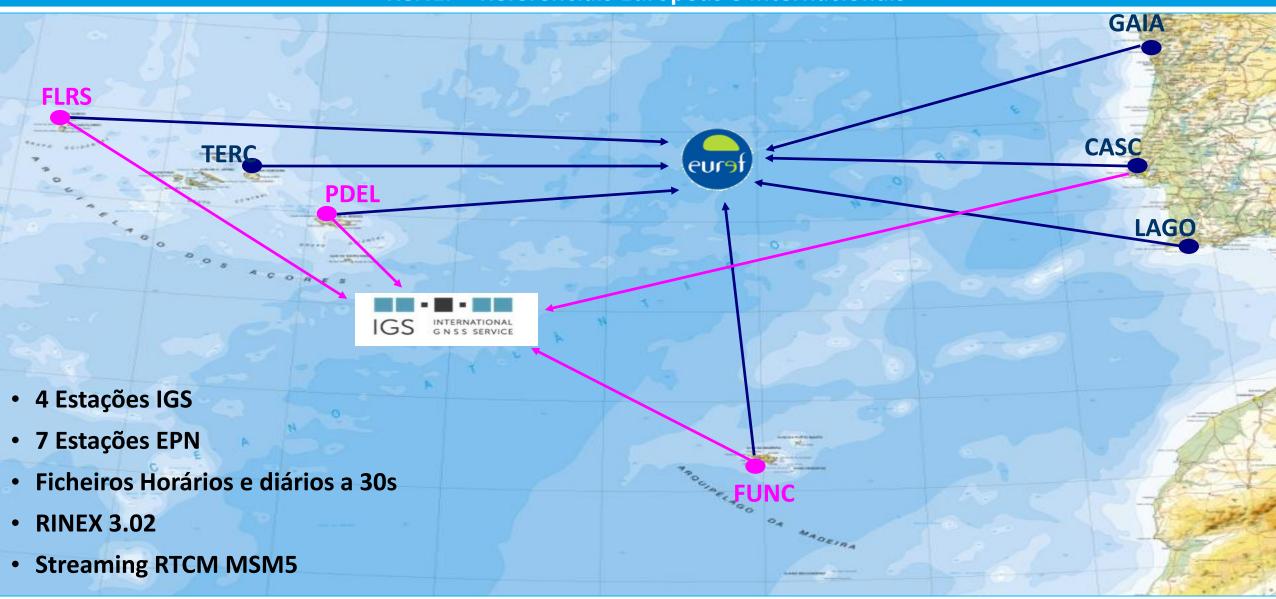
Utilizadores da ReNEP

• Número de utilizadores registados para o serviço RTK: 2016-2024

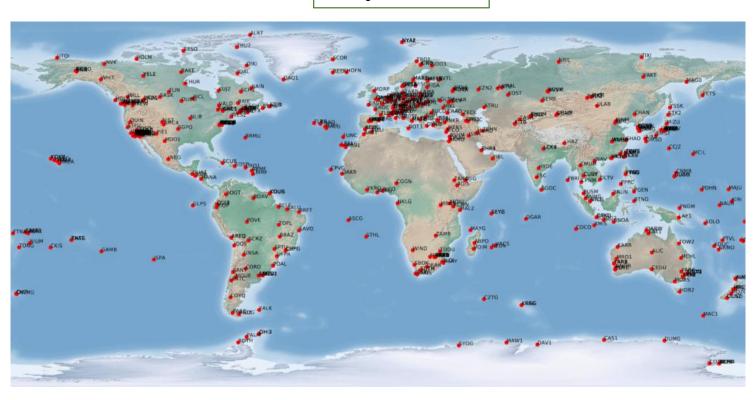
Atual: 6960



Utilizadores da ReNEP

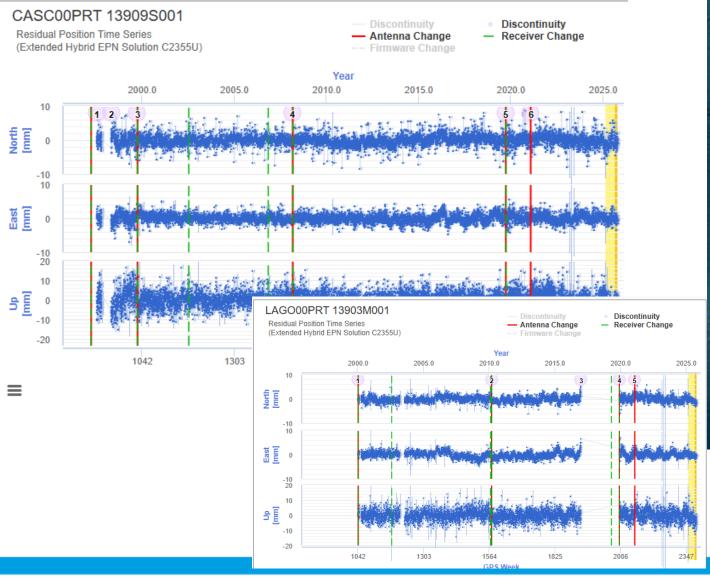

Médias anuais de ligação ao Servidor - RTK

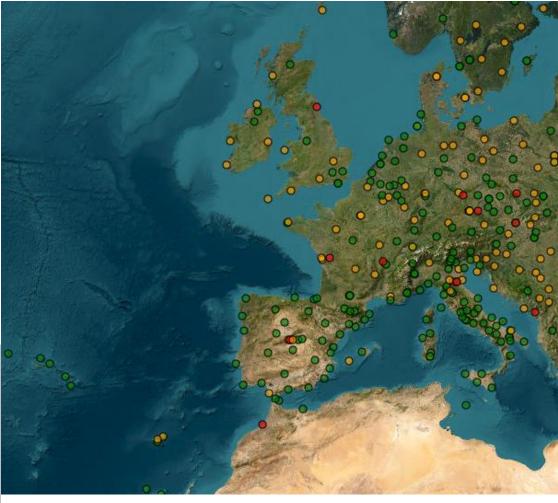
ReNEP - Referenciais Europeus e Internacionais



Sistemas de Referência – "globais"

- Desenvolvimento das técnicas geodésicas espaciais (VLBI, SLR, GNSS, ...)
- Exigência de maior rigor por parte da comunidade científica
- Uniformização dos sistemas e referenciais a nível global
- Sistemas de posicionamento por satélite (recetores GPS/GNSS) permitem determinar coordenadas precisas


Estações GNSS



https://geodesy.science/ggos/services/

Euref Permanent GNSS Network (EPN)

https://epncb.oma.be/_networkdata/stationmaps.php

Sistema PT-TM06/ETRS89

ETRS89 recomendado pela EUREF em 1990 para Referencial Europeu

• Datum: ETRS89 (ETRF97 para a época 1995.4)

• Elipsóide: GRS80

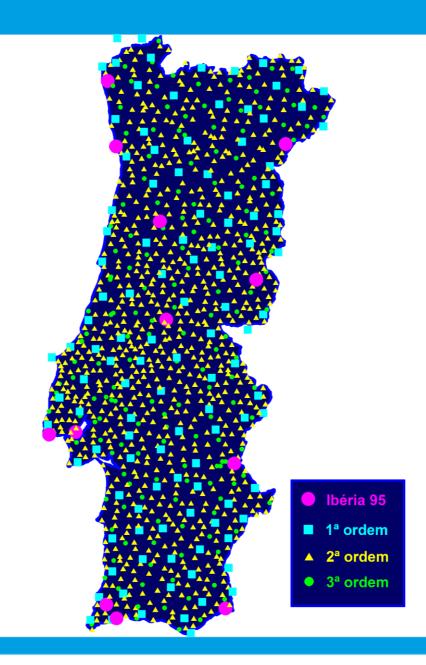
• Realização: Coordenadas de mais de 1120 VG (RGN)

Projeção Cartográfica:

Transversa de Mercator

Ponto Central da Projeção:

39º40'05".73N


08º07'59".19W

• Falsa origem das coordenadas retangulares:

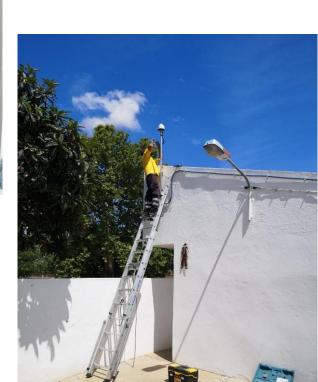
$$M = 0$$

$$P = 0$$

• Fator de escala no meridiano central: 1.0

Nova Realização do ETRS89 para Portugal continental

Novas coordenadas para a RGN2021: 47 EP e 1522 VG

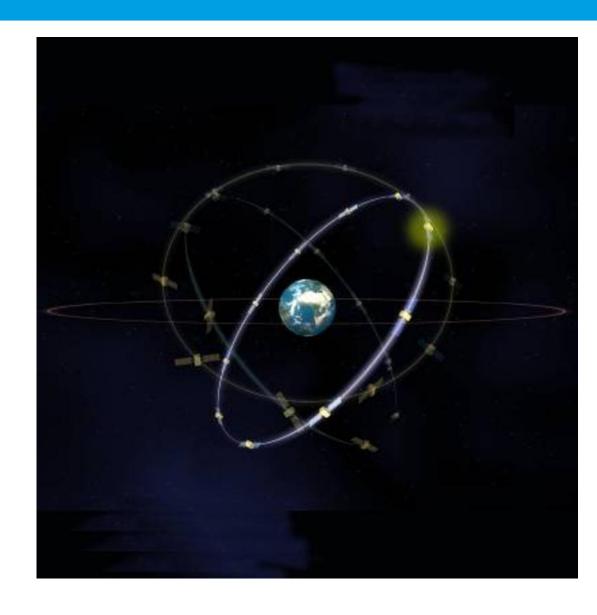

- •A adoção de uma nova realização do ETRS89 obriga à obtenção de novas coordenadas para
 - •ReNEP: coordenadas ETRF2020 (coordenadas ETRS89 tendo como base o ETRF2020)
 - •Vértices Geodésicos: ajustar a rede geodésica composta por todas as observações que ligam os VG entre si à ReNEP, constrangendo o ajustamento à solução da ReNEP

Obrigada

Referências

www.astro.oma.be/fr/

https://atlasescolar.ibge.gov.br/cartografia/21729-formas-da-terra.html


https://cafegeodesico.blogspot.com/2012/02/problemas-basicos-y-complementarios-de.html

https://lidarandradar.com/understanding-dgps-differential-global-positioning-system/

https://www.esa.int/Space in Member States/Portugal/Galileo avanca

https://epncb.oma.be/

https://igs.org/wg/tiga/

