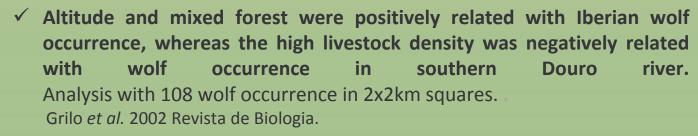
Predicting occurrence of Iberian wolf: the role of sample size and spatial scale

Mariana Seara, Gonçalo Costa, Sara Roque, Helena Rio Maior, Francisco Álvares, Francisco Petrucci-Fonseca, Clara Grilo

Wildlife corridors:

Spatial modelling of human pressure and its usefulness for Iberian Wolf conservation



What does literature tell us about

the wolf occurrence?

✓ Altitude, roughness and refuge strongly determine the Iberian wolf occurrence, followed by human pressure and food availability. Altitude was the main predictor that explain the wolf occurrence. Analysis with 267 wolf occurrence in 5x5km squares. Llaneza et al. 2012 Diversity and Distributions

✓ Iberian wolf-vehicle-collisions were more common in agricultural areas, where the population density is low.

Colino-Rabanal et al. 2011 European Wildlife Research

✓ Roads are not absolute barriers to wolves but they influence wolf movements within their territories.

Whittington et al. 2004 Ecology and Society; Blanco et al. 2005 Canadian Journal of Zoology

What does literature tell us about

the effect of scale and sample size in modeling species response to landscape?

- ✓ <u>Sampling should examine a series of spatial scales</u>, to increase the understanding of organism-environment relationships and identifying the most effective scales for predictive modeling.

 Vaughn & Ormerod 2002, Conservation Biology
- ✓ <u>Arbitrarily choosing an inappropriate scale</u> for measuring covariates, may provide biased inferences with respect to habitat selection patterns.

 Leblond *et al.*, 2011, Landscape Ecology

✓ <u>Combining two scales</u> allowed to identify areas that should be prioritized for management actions.

Martin et al., 2012 Journal of Applied Ecology

✓ <u>Model accuracy increased with larger sample sizes</u> for all modeling methods and is strongly influenced by <u>species ecological characteristics</u> independent of sample size.

Hernandez et al., 2006, Ecography

✓ Restricting the environmental range of data strongly influenced the estimation of response curves, especially towards upper and lower ends of environmental ranges.

Thuiller 2004, Ecography

Questions remained poorly understood...

√ What is the effect of sample size and scale to predict wolf occurrence?

✓ Does the relative importance of landscape, prey and human features vary with scale and sample size?

√ What is the best scale/sample size to predict wolf occurrence?

Main goal

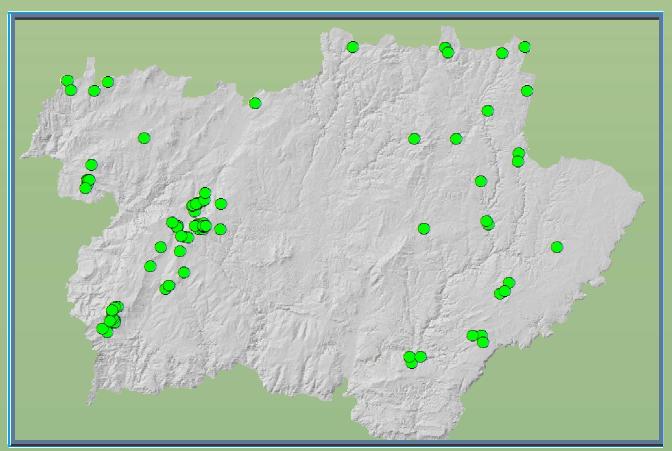
 Predict the Iberian wolf occurrence likelihood at three scales and sample sizes:

100x100m & ≈ 100 presences

2x2km & ≈ 300 presences

10x10km & ≈**1000** presences

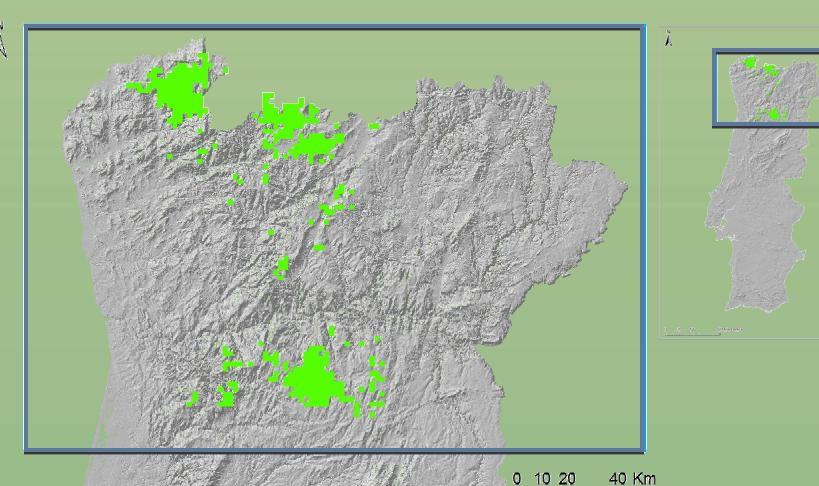
<u>Iberian wolf data – 100x100m</u>


Distribution range – Northern Portugal (Vila Real and Bragança counties)

Resolution - 100x100m

Sample size – 94 squares

Type of data – Direct observations, scats confirmed with genetics, photos

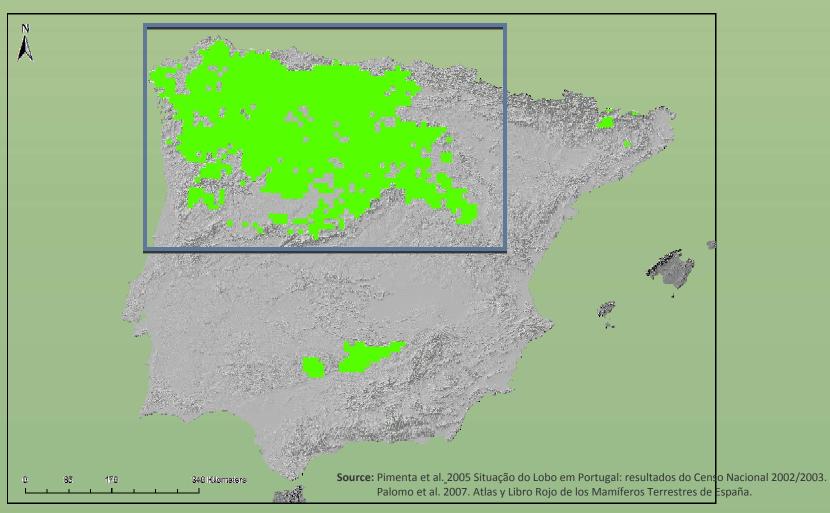

Iberian wolf data – 2x2km

Distribution range - North and southern Douro river (Peneda-Gerês, Alvão, Arada/Trancoso)

Resolution - 2x2km

Sample size - 318 squares

Type of data – Direct observations, scats confirmed with genetics, camera trapping photos, telemetry data


Iberian wolf data – 10x10

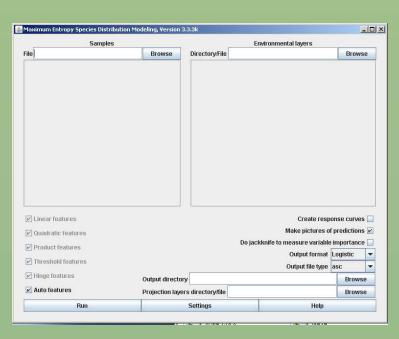
Distribution range - Iberian Peninsula

Resolution - 10x10km

Sample size - 953 squares

Type of data - Observations, scats without confirmation with genetics, camera trapping photos

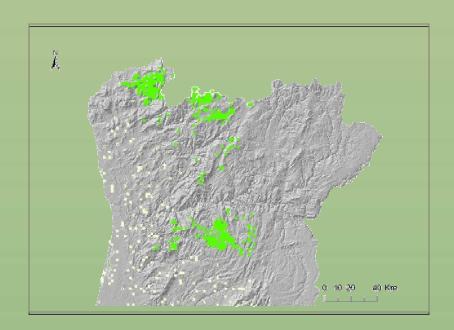
Environmental variables


Variables	Source/year	Resolution	Parameters	Description	
	Corine Land		Open Areas	Pastures, natural grassland, bare rock, sparsely vegetated areas	
Landscape	Cover 25 ha 2006 (PT/SP) Landscape		Forest	Broad leaved, coniferous, mixed forests, moors and heathland, sclerophylus vegetation, transitional woodland/shrub	
		100m	Altitude	Average Altitude	
	INE 2011 (PT)		Cattle		
Prey	INE/Censo agrário 2009 (SP)	county	Sheep	ind./km²	
			Goat		
Human pressure	INE 2011 (PT/SP)	county	Population Density	ind/km²	
	IGP (PT)	1:250000	Road density; Distance to roads	km/km²; m	

Statistical analysis

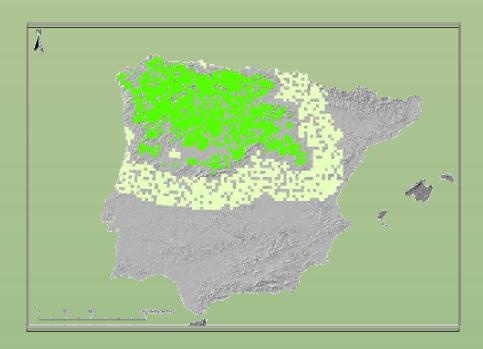
100x100m

Maximum entropy modeling of species geographic distribution


- Maxent software
- presence-only data
- •presences are described in terms of environmental variables
- •model all that is known and assume nothing about that which is unknown

Statistical analysis

2x2km


- Generalized Linear Models
- R software
- binary data (presence/absence),
- binomial distribution and logistic link
- presence/absence is described in terms of environmental variables
- Training data 80% of wolf presence (318 sq. 2x2km;)
- Validation data 20% of the wolf presence (80 sq. 2x2km; 10x10km)
- Ranking models accordingly to Akaike's Information Criterion (AIC)

Statistical analysis

• 10x10km

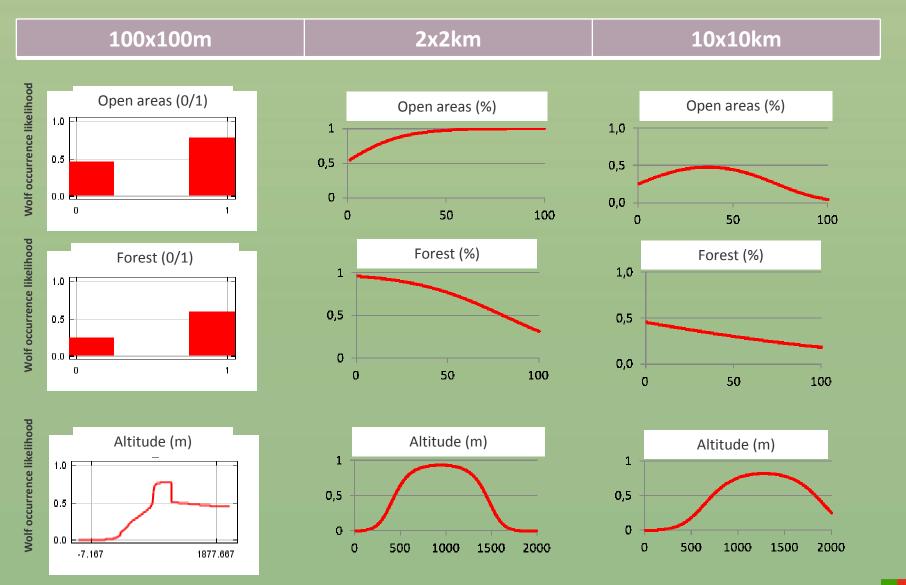
- Generalized Linear Models
- R software
- binary data (presence/absence),
- binomial distribution and logistic link
- presence/absence is described in terms of environmental variables
- Training data 80% of wolf presence (953sq. 10x10km)
- Validation data 20% of the wolf presence (239 sq. 10x10km)
- Ranking models accordingly to Akaike's Information Criterion (AIC)

Iberian wolf occurrence models - general results

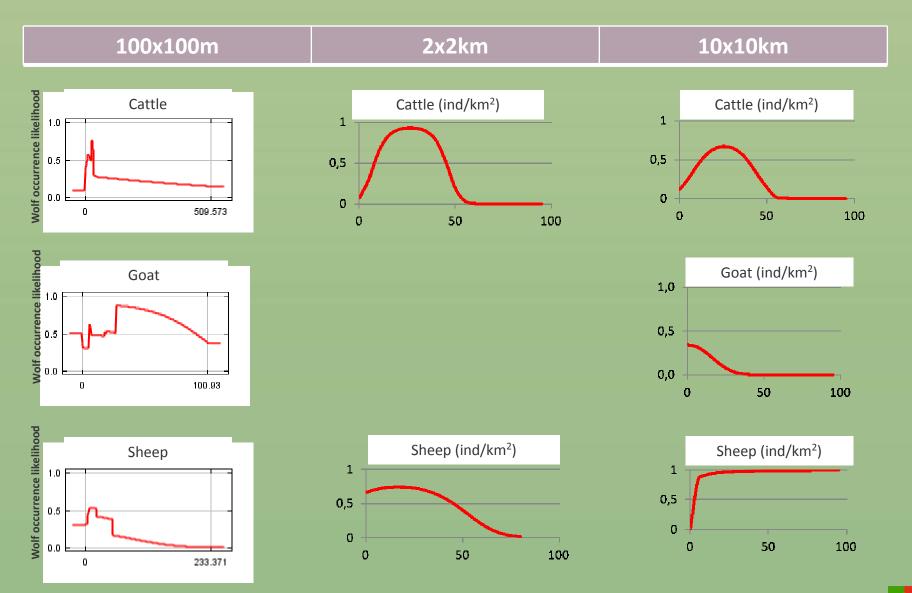
Scale/sample size	AUC	Classification	Validation
100x100m/94 sq.	0.93		
2x2km/318 sq.	0.97	92%	93%
10x10km/953 sq.	0.88	81%	76%

100x100m/94 sq.

Altitude	(70%)		
Forest	(7%)		
Open areas	(1%)		
Cattle	(11%)		
Goat	(1%)		
Sheep	(2%)		
Population density (2%) Road distance (6%)			

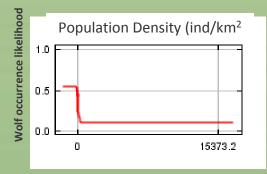

2x2km/318 sq.

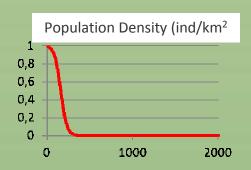
Altitude+ altitude ²		
Forest		
Open areas + Open Areas ²		
Cattle + Cattle ²		
Sheep + Sheep ²		
Population density		

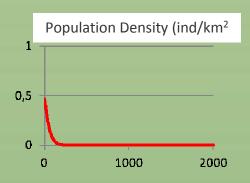

10x10km/953 sq.

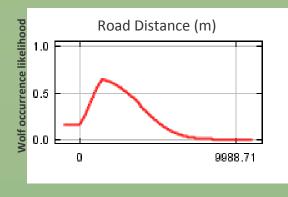
Altitude+ altitude²
Forest
Open areas + Open Areas²
Cattle + Cattle²
Goat + Goat²
Sheep + Sheep²
Population density
Road density

Iberian wolf occurrence models - landscape

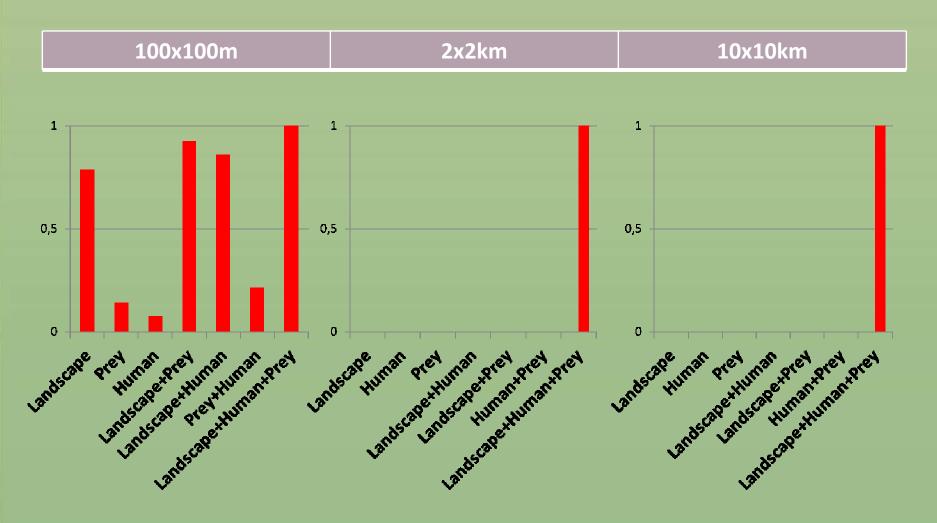


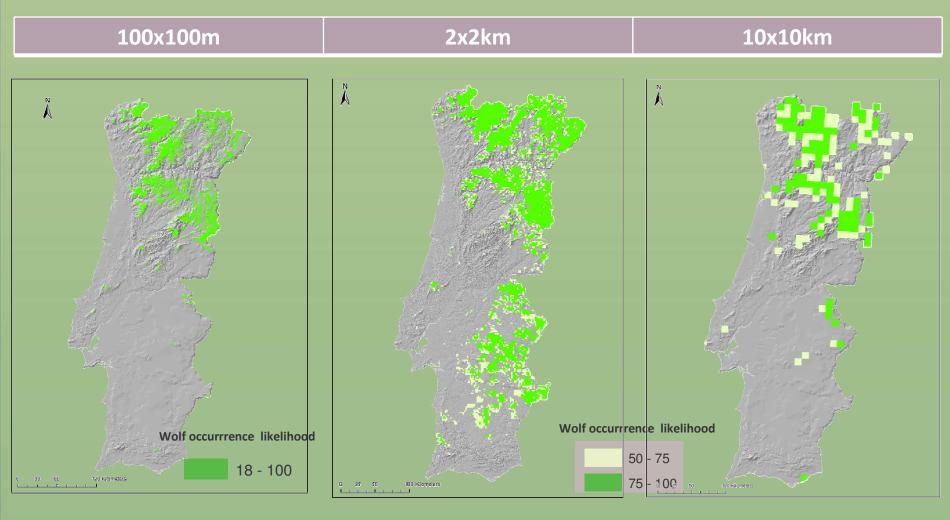

Iberian wolf occurrence models - prey




Iberian wolf occurrence models – human pressure







Relative weight of each group of variables

Iberian wolf occurrence likelihood

Area with 75% of wolf occurrence likelihood = 17 444km²

Area with 75% of wolf occurrrence likelihood = 9 100 km²

Correct classification: wolf squares vs. scales

Model	Vila Real and Bragança counties, NE Portugal	North and southern Douro river	Iberian peninsula
100x100m		95%	62%
2x2km	91%		93%
10x10km	66%	71%	

Conclusions

What is the effect of sample size and spatial scale to predict suitable habitat for wolf?

✓ Local scale (high resolution with low sample size) provided a good model with a low extrapolation accuracy.

✓ Regional scale (medium resolution and high sample size) provided the best model with the highest extrapolation accuracy.

✓ **Iberian Peninsula scale** (low resolution and the highest sample size) can lead to **less accurate results and extrapolation accuracy**.

Conclusions

Does the relative importance of landscape, human and prey-related features vary with sample size/scale?

- The combination of landscape+prey+human provided the best model for the 3 samples/scales levels.
- Landscape (mainly, altitude) was the most influential group of variables at local scale.
- > The relationship between wolf occurrence likelihood and variables varied among scales.
- Prey (e.g. sheep and goat) and, human pressure (e.g. road density) had different effects on 2x2km and 10x10km models.

What is the best trade-off between scale and sample to predict suitable habitat?

> Sampling in locations that comprise all habitats used by Iberian wolf with high resolution may provide accurate habitat suitability models

Take-home message

> Co-operation among wolf research groups in Portugal and Spain is crucial to evaluate the real preferences in order to perform conservation planning.

Next steps...

- > Disentangling the effects of sample and scale on the wolf models accuracy.
- Incorporate data on breeding sites and mortality to improve the wolf occurrence models.

Acknowledgments

Funding

Wildlife corridors: Spatial modelling of human pressure and its usefulness for Iberian Wolf conservation

PTDC/AAC-AMB/111457/2009

Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA EDUCAÇÃO E CIÊNCIA

Institutions involved

Centre for Environmental and Marine Studies www.cesam.ua.pt